
Leveraging LLVM Optimizations to Speed up Constraint Solving

Satisfiability Modulo Theories (SMT) constraints are first-order
logical formulas used to encode program analysis problems. SMT
solving is the foundation for LLVM-based analysis tools such as
KLEE [2], and analyses of the LLVM project itself, such as Alive
and its progeny [4–6]. When solvers can handle problems more
quickly, these tools perform better. For example, reducing solv-
ing time equates to greater code coverage in symbolic execution
of LLVM IR programs [2]. State-of-the-art solvers for SMT con-
straints, including CVC5 [1] and Z3 [3] efficiently reason about
some problems over bitvectors and floating-point numbers, yet
many constraints still take a prohibitively long time to solve. We
take a fresh perspective on speeding up SMT solving: by harnessing
the power of existing LLVM optimization passes, we can simplify
constraints before passing them to a solver. Thus while existing
work uses constraint solving to analyze programs, we “flip the
script” and give solver users the benefit of the extensive effort made
to develop LLVM optimization passes. Our strategy is to translate
SMT constraints into LLVM IR, apply the optimizer, and then trans-
late back. This alleviates manual developer effort in understanding
both solver and LLVM internals, and can apply to any SMT solver
since it pre-processes constraints.

We instantiate our approach with a practical tool called SLOT
(SMT-LLVM Optimizing Translation) [7], which takes as input SMT
constraints and produces simplified constraints, which are then fed
to a solver. SLOT consists of three components: a frontend which
converts SMT constraints to IR, LLVM’s existing compiler opti-
mizer, and a backend, which translates IR functions back into SMT
constraints. The key challenge for SLOT is bridging the semantic
gap between SMT constraints and LLVM IR. While many SMT-LIB
functions have direct equivalents in LLVM (bitvector addition, or
floating–point division, for example), the languages differ in subtle
ways. For instance, bitvector division in LLVM is undefined for
some inputs on which it is defined in SMT-LIB. SMT-LIB is missing
definitions of several critical LLVM bit operation intrinsics such
as counting set bits, while LLVM is missing some SMT-LIB opera-
tions like bvsmod. We bridge the gap by developing a one-to-one
mapping between SMT-LIB function applications and sequences of
LLVM instructions.

Our extensive empirical evaluation on more than 100,000 bench-
marks from the standard SMT-LIB benchmark set demonstrates that
SLOT allows LLVM optimizations to substantially speed up SMT
solving, especially for complex constraints which would otherwise
take a long time to solve. SLOT speeds up average solving time by
more than 2× for bitvector and floating–point constraints, and as
high as 3× for mixed constraints. It also increases the number of
solvable constraints at fixed timeouts by up to 80%. Moreover, we
expand the uses of LLVM’s optimization repertoire by giving solver
developers new insights about which existing compiler strategies
could be useful in the solving context—we find that simple peep-
hole optimizations, reassociation, and global value numbering are
the most effective at speeding up solving. Our results therefore
expand the uses of LLVM to SMT solvers which play a key role in

both industry and academia, and complete the circle by improving
analysis tools useful to LLVM’s further development.

References
[1] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt,

Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres
Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare
Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT
Solver. In Tools and Algorithms for the Construction and Analysfis of Systems - 28th
International Conference, TACAS. 415–442.

[2] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In 8th USENIX Symposium on Operating Systems Design and Implementation, OSDI.
209–224.

[3] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2008. Z3: An Efficient SMT
Solver. In Tools and Algorithms for the Construction and Analysis of Systems, 14th
International Conference, TACAS. 337–340.

[4] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr.
2021. Alive2: bounded translation validation for LLVM. In PLDI ’21: 42nd ACM
SIGPLAN International Conference on Programming Language Design and Imple-
mentation. 65–79.

[5] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. 2015.
Provably correct peephole optimizations with alive. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). 22–32.

[6] David Menendez, Santosh Nagarakatte, and Aarti Gupta. 2016. Alive-FP: Auto-
mated Verification of Floating Point Based Peephole Optimizations in LLVM. In
Static Analysis - 23rd International Symposium, SAS. 317–337.

[7] Benjamin Mikek and Qirun Zhang. 2023. Speeding up SMT Solving via Compiler
Optimization. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2023 (to appear).


	References

